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Abstract. The innate immune response is the first line of host defense against 
infections. This system employs a number of different types of cells which in 
turn activate different sets of genes. Microarray studies of human and mouse 
cells infected with various pathogens identified hundreds of differentially 
expressed genes. However, combining these datasets to identify common and 
unique response patterns remained a challenge. 
We developed methods based on probabilistic graphical models to combine 
expression experiments across species, cells and pathogens. Our method 
analyzes homologous genes in different species concurrently overcoming 
problems related to noise and orthology assignments. Using our method we 
identified both core immune response genes and genes that are activated in 
macrophages in both human and mouse but not in dendritic cells, and vice 
versa. Our results shed light on immune response mechanisms and on the 
differences between various types of cells that are used to fight infecting 
bacteria. 
Supporting website: http://www.cs.cmu.edu/~lyongu/pub/immune/ 

1 Introduction 

Innate immunity is the first line of antimicrobial host defense in most multi-cellular 
organisms, and is instructive to adaptive immunity in higher organisms [12]. There 
are multiple types of immune cells, including macrophages, dendritic cells, and 
others. Depending on their role, each type of cell may respond by activating a 
different set of genes, even to the same bacteria [5]. In addition to the cell type, innate 
immune response differs based on the specific pathogen in question [32]. To date, 
gene expression profiling has been used to investigate transcriptional changes in 
human and mouse macrophages and dendritic cells during infection with several 
different pathogens [5,7,8,13,16,17,22,29,36]. In each of these studies, a list of genes 
involved in the response is determined by first ranking the genes based on their 
expression changes and then selecting the top-ranked genes based on a score or p-
value cutoff. While some papers analyze data from multiple cell types or multiple 

                                                            
* To whom correspondence should be addressed: zivbj@cs.cmu.edu 



2   

pathogens, a large scale comparison of these datasets across cells, pathogens and 
different species has not yet been performed. 

Microarray expression experiments that study immune response to bacteria 
infection can be divided along several lines. Here we focus on three such divisions: 
cell types, bacteria types, and host species.  

Innate immunity is the result of the collective responses of different immune cells, 
which are differentiated from multipotential hematopoietic stem cells [19]. To 
understand the roles of and possible interplays between different types of immune 
cells, it is important to identify both the common responses of different immune cells, 
as well as responses unique to a certain cell type. Identification of genes differentially 
expressed in macrophages but not in dendritic cells, and vice versa, may highlight 
their specific functions and help us understand mechanisms leading to their different 
immune response roles. In addition to the different cells, specific bacteria types are 
known to trigger very different innate immune responses [32]. Specifically, response 
to Gram-positive and Gram-negative bacteria is activated by different membrane 
receptors that recognize molecules associated with these bacteria. Finally, many of the 
key components in the innate immune system are highly conserved [15]. For example, 
the structure of Toll-like receptors (TLRs), a class of membrane receptors that 
recognizes molecules associated with bacteria, is highly conserved from Drosophila to 
mammals. It is less known though to what extent the immune response program is 
conserved and what other genes play a role in this conserved response. 

While each of these subsets of experiments (macrophages vs. dendritic, human vs. 
mouse etc.) can be analyzed separately using ranking methods and then compared, 
due to noise in gene expression data methods that rely on a score cutoff become much 
less reliable for genes closer to the threshold [27]. Thus, analyzing responses to 
different pathogens and then examining the overlap between the lists derived for each 
experiment may not identify a comprehensive list of immune response genes. 
Similarly, while comparing the expression changes triggered by similar bacteria in 
human and mouse may lead to the identification of conserved immune response 
patterns, direct comparison of these profiles across experiments is sensitive to noise 
and orthology assignments, leading to unreliable results and underestimation of 
conservation [25]. 

In previous work [26,27] we combined expression datasets from several species to 
identify conserved cell cycle genes. The underlying idea is that pairs of orthologous 
genes are more likely than random pairs to be involved in the same cellular system. 
Thus, if one of the genes in the pair has a high microarray expression score while the 
other has a medium score, we can use the high scoring gene to elevate our belief in its 
ortholog, and vice versa. We used discrete Markov random fields (MRFs) to construct 
a homology graph between genes in different species. We developed a belief 
propagation algorithm to propagate information across species allowing orthologous 
genes to be analyzed concurrently.  

Here we extend this method in several ways so that it can be applied to analyzing 
immune response data. Unlike the cell cycle, which we assumed worked in a similar 
way in all cell types of a specific species, here we are interested in both common 
responses and distinguishing responses for each dividing factor. This requires a 
different analysis of the posterior values assigned to nodes in the graph. In addition, 
for the immune response analysis, genes are represented multiple times in the graph 
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(once for each cell and bacteria type) leading to a new graph topology. We are also 
interested in multiple labels for immune response (up, down, not changing) compared 
to the binary labels we used for cell cycle analysis. Finally, in this paper we use a 
Gaussian random field instead of a discrete Markov random field leading to faster 
updates and improved analysis. Instead of simply connecting genes with high protein 
sequence, the edges in the graph are determined in a novel way that enables us to 
utilize the information contained in sequence homology in a global manner, leading to 
improved prediction performance. 

We have used our method to combine data from expression experiments across all 
three dividing factors. Our method identified a core set of genes containing many of 
the known immune response genes and a number of new predictions. In addition, our 
method successfully highlighted differences between conserved responses in 
macrophages and dendritic cells, shedding new light on the functions of these types of 
cells. 

A number of papers used Markov random field models to integrate biological data 
sources.  These include work on protein function prediction [6,24] and functional 
orthology prediction [2]. Our method has different goals and uses different data 
sources. In addition our work differs from these previous papers in several important 
aspects. Our method propagates information from different cell types and species to 
improve gene function prediction, while previous work either did not use cross-
species information, or only used it to align networks from different species.  We do 
so by defining our model on a network that explicitly represents genes from different 
species and cell types.  In contrast, previous work either focused on a single species 
[6,24], or on an aligned network where each node represents an orthologous group 
[2]. Finally, our model is defined on continuous random variables instead of discrete 
variables, which enables us to predict three-class labels (up/unchanged/down), while 
most previous models only handle two-class labels.  

2 Computational model: Gaussian random field 

We formulate the problem of identifying immune response genes using a probabilistic 
graphical model. In a probabilistic graphical model, random variables are represented 
by nodes in a graph, and conditional dependency relations are represented by edges. 
Probabilistic graphical models can be based on directed graphs or on undirected 
graphs. The model we use here is based on undirected graphs, where special functions 
(termed “potential functions”) are defined on nodes and edges of the graph, and the 
joint probability distribution is represented by the product of these potential functions. 
The form of the potential functions encodes our prior knowledge as well as modeling 
preferences.  

We use Gaussian random fields (GRFs) to model the assignment of gene labels. 
Gaussian random fields are a special type of Markov random fields. In a GRF, every 
node follows a normal distribution, and all nodes jointly follow a multivariate normal 
distribution. There are two types of nodes in our graphical model (Fig. 1). The first 
type is a gene node; it represents the status of a gene in a certain cell type, from a 
certain host species, in response to a certain type of pathogen. Here we consider two 
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cell types (macrophages and dendritic cells), two host species (humans and mice), and 
two pathogen types (Gram-negative and Gram-positive bacteria) although the model 
is general and can accommodate other types as well. The set of possible labels for 
each gene can be either two (involved in immune response or not), or three 
(suppressed, induced, or unchanged during immune response). For simplicity, we will 
describe our model using binary labels, but will present the results based on both sets 
of possible labels.  

Corresponding to each gene node is a score node, representing the observed 
expression profile of the corresponding gene. Together, the GRF jointly models the 
labels of all genes in all cell types, all species, and under both types of infection 
conditions. The edges in the GRF represent the conditional dependencies between 
gene labels. We put an edge between two gene nodes when they are a priori more 
likely to have the same label. Specifically, there are two cases where we add an edge. 
In the first case, for each gene node in the graph, we connect it with another gene 
node if the protein sequence similarity between these two genes is high and the 
experiments related to both nodes are in the same cell and bacteria types. The 
assumption is that genes with similar sequence are more likely to have similar 
function in the same type of cell and for the same bacteria. The edge potential 
function defined on these edges (presented below) introduces a penalty when two 
genes with high sequence similarity are assigned different labels. In the second case, 
we connect a gene node with another gene node if the two nodes represent the same 
gene in the same type of cell or bacteria. Here we assume the genes are likely to 
function similarly in the same type of cell, or under the same type of infection. Again, 

   
(a)       (b) 

Fig. 1. Diagram of the Gaussian random field (GRF) model. (a) A subgraph in the GRF
containing homologous human and mouse genes. The white node hm

+ represents the (latent)
label of the human gene h in macrophages under infection of Gram-positive bacteria. hm

-

represents the gene’s label in macrophages under infection of Gram-negative bacteria. hd
+ and

hd
- represent the labels of the same genes in dendritic cells under the infection of Gram-

positive or Gram-negative bacteria. mm
+, mm

-, md
+, and md

- are similarly defined for the
homologous mouse gene m. Two white nodes are connected by an edge if they represent the
same gene in two experiments, either on the same cell type or under the infection of the same
type of bacteria. We also connect two white nodes if they represent homologous genes in the
same cell type and under the infection of the same type of bacteria. The black nodes represent
the observation from the expression data in a certain cell type and under the infection of the
appropriate bacteria. They are connected with the white nodes representing the corresponding
genes under the same condition. (b) A high level diagram of the GRF model. Each dotted box
represents a subgraph of four nodes related to the same gene as those shown in (a), and each
“edge” represents four edges connecting the nodes of homologous genes in the two dotted
boxes, in the same way as shown in (a). 
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the potential function penalizes the case where a gene is assigned different label under 
different conditions for the same cell. The size of the penalty depends on the strength 
or weight attached to the edge. Different edges may have different weights (see 
below). The joint probability is defined as the product of the node potential functions 
and edge potential functions, divided by a normalization function. We can infer the 
label of individual genes by estimating the joint maximum a posteriori (MAP) 
assignment of all nodes. 

2.1 Computing the weight matrix 

An important issue in random field models is the assignment of edge weights. 
Employing a similar approach but in a simpler setting, Lu et al. [26] use a Markov 
random field to jointly model gene statuses in multiple species, where edges in the 
graph are weighted by BLASTP [1] scores between pairs of genes. Given two genes 
connected in the graph, the edge weight (BLASTP bit score) represents the sequence 
similarity between the two genes, which in turn captures the a priori dependency 
between their labels. While this is a useful strategy, in a Markov random field model 
edges represent the dependency between the two nodes conditioned on the labels of 
all other nodes [3]. In contrast, sequence similarity is computed for a pair of genes 
regardless of other genes. In other words, what a BLASTP score captures is the 
marginal dependency between the two genes’ labels rather than the conditional 
dependency. 

To address this issue we compute new edge weights using the BLASTP score 
matrix, which captures the marginal covariance of the Gaussian random field. It has 
been shown that for GRFs the appropriate weight matrix is equal to the inverse of the 
marginal covariance matrix [39]. 

Using this observation, we can build a similarity matrix based on BLASTP scores, 
and use its inverse as the weight matrix for the GRF. Each row (and each column) in 
the similarity matrix corresponds to a gene. If the BLASTP bit score between two 
genes is above a cutoff, we set the corresponding elements in the similarity matrix to 
that score. Otherwise, it’s set to zero. We use a stringent cutoff (Results) so that we 
are fairly confident of the functional conservation when we add a non-zero element. 
Because the similarity matrix contains scores for all genes in two species, the 
computational cost to invert it is very high. We thus compute an approximate inverse. 
We first convert the matrix into a diagonal block matrix by Markov clustering 
algorithm [9], then compute the approximate inverse by inverting each block 
independently. The matrix inversion is done using the Sparse Approximate Inverse 
Preconditioner [14]. 

Finally, we assign edge weights based on this inverse matrix. Note that each gene 
is represented by four nodes in the graph, because it is present in different 
experiments on two cell types and two types of pathogens. For edges connecting gene 
nodes in different species we set the weight according to the inverse similarity matrix. 
For edges connecting the same gene in different types of cells and bacteria we use a 
single hyperparameter as their edge weight for cell and bacteria relationships. 
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2.2 Expression score distribution 

The gene expression score is a numeric summary computed from the gene’s 
microarray time series, which we will define in Results. We assume that the scores of 
genes with the same label follow a Gaussian distribution with an experiment specific 
mean and variance. Due to noise in microarray experiments, these distributions are 
highly overlapping, making it hard to separate labels by expression score alone. 

2.3 Node potential function 

The node potential functions capture information from gene expression data. For each 
gene i, let Ci denote its (hidden) label, Si denote its expression score, yi denote the 
random variable in the GRF associated with this gene. As mentioned above Ci can be 
a binary variable or a ternary variable if we consider three gene labels. Si and yi are 
both real variables. Because each yi follows a normal distribution, we need to have a 
way to link a gene’s probability of belonging to each class with the corresponding 
normal distribution. This is achieved by the probit link function. In the binary labels 
case let pi be the probability of gene i being an immune response gene conditioned on 
its expression score Si,  

  )0Pr()0|Pr()1Pr()1|Pr(
)1Pr()1|Pr()|1Pr(

==+==
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iiiiii
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For the GRF the node potential function is defined as  
ψi(yi)= φ(yi | μ = Φ-1(pi), σ2=1)   (1) 

where φ(yi | μ, σ2) is the probability density function for the normal distribution with 
mean μ and variance σ2, and Φ-1(x) is the probit function, i.e. the inverse cumulative 
distribution function for the standard normal distribution. In other words, the 
information from a gene’s expression score is encoded by a normal distribution of yi 
such that pi = Pr(yi > 0). 

In the case of three labels for genes (Ci ∈ {-1, 0, +1}), we can use the following 
formulas to link the probabilities of Ci and yi: 
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It can be proven (see appendix) that given any (non-zero) probability mass 

function on Ci, we can find a normal distribution N(μ, σ2) such that these formulas are 
satisfied when yi ~ N(μ, σ2).  

2.4 Edge potential function 

The edge potential functions capture the conditional dependencies between pairs of 
gene nodes. The assumptions here are that (1) genes with higher sequence similarity 
are more likely than otherwise to have the same or similar functions; and (2) a given 
gene is likely to have the same function across cell types and across pathogens. 
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First we will define the edge potential functions for edges connecting homologous 
genes in the same cell type and under infection of the same type of bacteria. In this 
case, the edge potential function depends on the weight matrix we introduced above. 
Note that although all elements in the BLAST score matrix are non-negative 
(sequence similarities are non-negative), its inverse matrix may have negative 
elements. As a consequence, edge weights can be either positive or negative. A 
positive edge weight indicates that the labels of the two gene are positively correlated, 
conditioned on the labels of all other gene nodes. A negative edge weight means that 
they are negatively correlated, conditioned on the other gene nodes. 

The following edge potential function captures this dependency (λ0 is a positive 
hyperparameter): 
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When the edge weight wij is positive, the edge potential function places a penalty 

if yi and yj are different. The larger the difference, the higher the penalty. Likewise, 
when wij is negative, the edge potential function introduces a penalty based on how 
close yi and yj are to each other. The penalty becomes higher when we become more 
confident in yi and yj and the two are close. 

For edges connecting the same gene in the same cell type but under infection of 
different types of bacteria, the edge potential function is defined as 

 })(exp{),( 2
11 jiji yyyy −−= λψ  

where λ1 is a positive hyperparameter. Similarly for edges connecting the same gene 
under the infection of the same type of bacteria but in different cell types, the edge 
potential is defined as 

 })(exp{),( 2
22 jiji yyyy −−= λψ  

where λ2 is a positive hyperparameter. Together, the joint likelihood function is 
defined as 

 ∏ ∏∏∏= ),(),(),()(1
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3 Learning the model parameters 

In this section we will present our algorithm based on two gene classes. The algorithm 
can be extended to three gene classes by using different node potential functions (See 
discussion in Section 2.3). For our model we need to learn the hyperparameters λ. We 
also need to learn the parameters of the expression score distributions for each 
combination of cell types, host species, and pathogen types. In each case, there are 
four parameters (μ0, σ0

2, μ1, σ1
2), i.e. the means and variances of the two different 

Gaussian distributions, one corresponding to the scores of immune response genes, 
the other corresponding to the scores of the remaining genes. 

We learn these parameters in an iterative manner, by an EM-style algorithm. We 
start from an initial guess of the parameters. Based on these parameters, we infer 
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“soft” posterior assignments of labels to the genes using a version of the belief 
propagation algorithm on the GRF. The posterior assignments are in turn used to 
update the score distribution parameters. We repeat the belief propagation algorithm 
based on the new parameters to infer updated assignments of labels. This procedure 
goes on iteratively until the parameters and the assignments do not change anymore. 
Below we discuss these steps in detail. 

Table 1. Algorithm for combining immune response gene expression data  

Input 
  1. expression score Si for each gene in each cell type, host species, and pathogen type 
  2. graph structure (edge weights) 
Output 
  For each gene node, its posterior probability of belonging to each class 
Initialization 
  For each combination of host species, cell type, and pathogen type, compute estimates for 
μ0, σ0, μ1, and σ1 using permutation analysis 

Iterate until convergence 
  1. Use Belief Propagation to infer a posterior for each gene node 
  2. Use the estimated posterior to re-estimate the Gaussian expression score distributions 

 

3.1 Iterative step 1: inference by belief propagation 

Given the model parameters, we want to compute the posterior marginal distribution 
for each latent variable yi, from which we can derive for each gene node the posterior 
probability of being involved in immune response. It is hard to compute the posteriors 
directly because the computational complexity of the normalization function in the 
joint likelihood function scales exponentially. However, due to the dependency 
structure in the GRF, we can adapt the standard Belief Propagation algorithm [38] for 
GRF, and use it to compute all the posteriors efficiently. 

Unlike MRFs defined on discrete variables, variables in GRFs are continuous and 
follow normal distributions. The current estimation of the marginal posterior (“belief”) 
of every latent variable yi in the GRF is a normal distribution. Similarly, the 
“messages” passed between nodes are also normal distributions.  

The Belief Propagation algorithm consists of the following two steps: “message 
passing”, where every node in the GRF passes its current belief to all its neighbors, 
and “belief update”, where every node updates its belief based on all incoming 
messages. The algorithm starts from a random guess of the beliefs and messages, and 
then repeats these two steps until the beliefs converge. 

(1) Message passing. In this step, every node yi computes a message for each of its 
neighbors yj, sending yi’s belief of yj’s distribution. The message is based on 
the potential functions, which represent local information (node potential) and 
pairwise constraints (edge potential), as well as incoming messages from all 
yi’s neighbors except yj. 

 
i
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(2) Belief update. Once node yi has received messages from all its neighbors, it 
updates the current belief incorporating all these messages and the local 
information from the node potential. The update rule is as follows 

 
∏
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where vi is a normalization constant to make bi(yi) a proper distribution.  

 
Because all the messages and beliefs come from a normal distribution, they can be 

represented by the corresponding means and variances. Thus, in this case the message 
update rule and belief update rule above can be formulated into rules updating the 
means and variances directly, completely avoiding these computationally expensive 
integration operations. The exact update rules are given in the appendix. 

3.2 Iterative step 2: updating the score distribution 

The posterior computed in step 1 is based on the current (the g’th iteration) estimation 
of parameters, collectively denoted by Θ(g). The goal now is to determine the 
parameters that maximize the expected log-likelihood of the complete data over the 
observed expression scores given the parameters Θ(g) = (μ0

(g), σ0
(g), μ1

(g), σ1
(g)). 

To update the parameters of the score distributions, we first compute the posterior 
probability of a gene being involved in immune response, based on the posterior of yi. 
This is the same as applying the reverse probit function: 
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Our algorithm is summarized in Table 1. 

3.3 Learning the hyperparameters 

To learn the hyperparameters λ0, λ1 and λ2, we use a list of known immune genes. 
These serve as training data for our algorithm. Following convergence of the belief 
propagation algorithm we optimize the prediction accuracy using the Nelder-Mead 
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algorithm [33]. Note that this list is not used for the Results below. We divided our 
list of known immune genes and only used a third to learn the parameters. The other 
two thirds were used for the comparisons discussed below. 

Table 2. Summary of datasets used. 

Host/Cell Type Gram- Datasets Gram+ Datasets
Human Macrophages 5 2
Human Dendritic Cells 9 2
Mouse Macrophages 7 7
Mouse Dendritic Cells 7 0

4 Results 

Immune response data. Immune response microarray experiments were retrieved 
from supporting websites of [5,7,8,13,16,17,22,29,36], totaling 39 data sets. The data 
sets include experiments on macrophages and dendritic cells in humans and mice. For 
each cell type we have included experiments using Gram-positive and Gram-negative 
bacteria, except for mouse dendritic cells, for which we only found Gram-negative 
bacteria datasets. Human and mouse orthologs were downloaded from Mouse 
Genome Database [10]. Table 2 summarizes the datasets used in this paper. 

Computing expression scores and edge weights. For each gene in each experiment, 
an expression score is computed from the gene expression time series data. The score 
is based on the slope of the time series to capture both the change in expression levels 
and the time between infection and response. Specifically, we first compare the 
absolute values of the highest and the lowest expression levels. The score is positive if 
the former is higher, or negative if the latter is higher. Denote the time point that 
corresponds to the highest absolute value of the expression level as ti. The score is 
computed as follows: Si = expression(ti) / ti. The score is positively correlated with the 
height of the peak expression value and increases the earlier this value is reached. 

To compute the edge weights we first computed the BLASTP bit score between 
each pair of protein sequences. We turned the bit scores into a matrix, and set to zero 
those elements smaller than the 100 (our cutoff). We next computed an approximate 
sparse inverse of this matrix [14] and used it as the weight matrix for the graph.  

Recovering known human immune response genes. To evaluate the performance of 
our model, we retrieved 642 known human innate immune response genes from [20], 
and used them as our labeled data. We learned the model parameters by three-fold 
cross validation using the labeled data. We compared the performance of GRF, MRF, 
and the baseline model where genes are ranked by their expression score alone. The 
MRF model is discussed in detail in [26]. We use the fraction of known immune 
response genes recovered by a model as the performance measure. Because the set of 
immune response genes we used does not have labels indicating the cell types or 
infection conditions, we treat a gene as “positive” regardless of the cell type and 
bacteria type. For GRF and MRF models, the genes were ranked by their highest 
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posterior probability (in any of the cell or bacteria types). For the baseline model, the 
genes are ranked by their expression scores. As we show in Fig. 2 (a), both GRF and 
MRF models outperform the baseline model. These models are able to infer a better 
gene’s posterior probability by transferring information between the same gene across 
cell types or from homologous genes across species. For example, for the top 10% 
ranked genes, MRF is able to recover 28% of known immune response genes, 
compared with 26% by the baseline model. Encouragingly, GRF leads to the biggest 
improvement in performance. Of the top 10% high scoring genes based on the 
posterior computed by GRF, 35% are known immune response genes, a 35% increase 
compared to the baseline (score only) model. 

To study the gain obtained by using cross species analysis we tested the 
performance of the GRF model when using only the human genes (removing the 
mouse genes from the graph). As we can be seen in Fig. 2(b), the performance of the 
GRF when only human genes are included is drastically reduced. The ROC curve 
when using this data is completely dominated by the curve of the results when using 
both species, even though the comparison is for recovering known human genes. This 
indicates that by combining data from both species we can improve the assignment of 
each species as well. 

To determine how sensitive the computed expression cores are to experimental 
noise, we carried out similar analysis on data that was generated by adding a small 
Gaussian noise term (mean=0,variance=m2, where m is the median expression 
difference between the first two time points) to each time point of the immune 
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   (a)        (b)  

Fig. 2. (a) Performance comparison of the Gaussian random field (GRF) with improved
weights, the Markov random field (MRF), and a baseline model ranking genes by their
expression scores. Using MRF we were able to recover 18% known immune genes in the top
5% of ranked genes. This is a 28% improvement compared with the baseline model (which
recovers 14% of the immune genes). The GRF model is able to recover 25% known immune
genes at the same threshold, a 79% improvement over the baseline method and a 38%
improvement over the MRF. (b) Performance comparison of GRF on two different graphs. The
first graph contains genes from macrophages and dendritic cells in both human and mouse. The
second graph contains genes from human macrophages and dendritic cells, but not from those
in mouse. It can be seen that using homology information leads to large improvements. 
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response data.  For each of the noise added datasets we determined the score’s 
performance for recovering known human immune response genes as discussed 
above. We repeated this process 50 times and found that the precision varies by 10% 
compared to the real data indicating the robustness of the computed scores (see 
Supporting website for details). 

Identification of common response genes by combined analysis. Based on the 
learned posterior probabilities, we ranked the genes for each cell type in each species, 
for both Gram-positive and Gram-negative infections. We identified 57 ortholog pairs 
for which all nodes for both genes are assigned high posterior (see appendix). These 
genes are commonly induced by all bacteria in both macrophages and dendritic cells 
across the two species (Fig. 4). As a sanity check, we first compared our list with a 
separate list of genes commonly induced in human macrophages by various bacteria. 
This latter list was derived from expression experiments that were not included in our 

 
Fig. 3. One of the networks of genes commonly induced in both dendritic cells and
macrophages when infected by bacteria, in both human and mouse. The network was
constructed using Ingenuity Pathway Analysis (www.ingenuity.com). The gray-colored nodes
are genes identified by our method. White-colored nodes are genes interacting with commonly
induced genes. Note the large fraction of the pathway recovered by our method. Many known
immune response genes are present in this network. IL1 is an important mediator of
inflammatory response and involved in cell proliferation, differentiation, and apoptosis
(Mizutani et al., 1991; Bratt and Palmblad, 1997). ETS2 is an important transcription factor for
inflammation. CCL3, CCL4, and CCL5 are chemokines that recruite and activate leucocytes
(Wolpe et al., 1988). The profiles for one of these genes, CCL5, are shown in Fig. 4. 
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analysis [32]. The results confirmed the lists we identified. The overlap between the 
two lists was highly significant with a p-value = 1.70x10^-25 (p-value computed 
using hypergeometric distribution). 

To reveal the functions of the common response genes we carried out GO 
enrichment analysis using STEM [11]. The enriched GO categories include many 
common categories involved in immune responses, including “immune response” (p-
value=3.9x10^-8, all p-values corrected using Bonferroni), “inflammatory response” 
(p-value=2.5x10^-7), “cell-cell signaling” (p-value=1.1x10^-6), “defense response” 
(p-value=1.5x10^-6), and “response to stress” (p-value=2.4x10^-5). 

Our list recovered many of the classic players of innate immune activation and 
inflammation. For example, TNF is a pro inflammatory cytokine and stimulates the 
acute phase reaction [28]. IL1 is an important mediator of inflammatory response and 
involved in cell proliferation, differentiation, and apoptosis [4,31]. The list also 
includes chemokines that recruit and activate leucocytes (CCL3, CCL4, CCL5, 
CXCL1) [37] or attracts T-cells (CXCL9) [35]. Also important to the regulation of 
inflammation response is IL10, a well-known anti-inflammatory molecule [21].  
Additionally, ETS2, NFkB, and JUNB are all very important transcription factors that 
are activated in inflammation [34]. In addition to recovering genes labeled in the IRIS 
database [20], which accounts for 21% of our predictions, we also successfully 
identified many immune response genes that were not included in the labeled dataset.  
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Fig. 4. Expression profiles of CCL5 
identified by our method as a common 
immune response gene.  (a) and (b) 
expression profiles for human CCL5 in 
dendritic cells and macrophages.  (c), (d) 
expression profiles for mouse CCL5 in 
dendritic cells and macrophages. Expression 
of both genes is strongly induced following 
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Fig. 5. Expression profiles of CD86 identified
to be activated only in dendritic cells. (a) and
(b), expression profiles for human CD86 in
dendritic cells and macrophages. (c), (d)
expression profiles for mouse CD86 in
dendritic cells and macrophages. For both
species, the expression of CD86 is induced in
dendritic cells, but unchanged following
infection in macrophages (and only mildly
induced at the end of the time course). 
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Six out of the top 10 such genes are known to be commonly induced in host response 
in macrophages and dendritic cells [18], including PBEF1, an inhibitor of neutrophil 
apoptosis [23], and MMP14, an endopeptidase that degrades various components of 
the extracellular matrix [30]. See supporting website for complete list. 

To identify the pathways involved in common immune response, we searched for 
networks enriched by common response genes using Ingenuity Pathway Analysis. 
One of these networks is shown in Fig. 3. 

 
Immune responses conserved in specific cell types. In addition to genes commonly 
induced across all dividing factors, we also identified genes that are differentially 
expressed between the two cell types. We identified 127 genes that are highly induced 
in dendritic cells in both bacteria types across human and mouse, but are not induced 
in macrophages (Fig. 5). GO enrichment analysis highlights some of the important 
characteristics of this set of genes, including “cell communication” (p-value=1.7x10^-
10) and “signal transduction” (p-value=1.1x10^-9). (See supporting website for the 
complete lists.) Many of the genes are known to be associated with functions of 
dendritic cells, especially antigen processing and presentation. For example, 
components of the proteosome are prominently represented in the genes determined to 
be induced in dendritic cells. The proteosome is a necessary first step in MHC class I 
antigen presentation, a major function of dendritic cells. Peptides generated by the 
proteosome are then transported from the cytosol to endoplasmic reticulum by TAP, 
also represented in the gene list, where they are loaded on to MHC I molecules. 
Antigen presentation by DC is also accomplished through the class II pathway and the 
DC-specific gene list includes HLA-DRA, a human MHC II (class II) surface 
molecule. In addition to peptide-MHC complexes, T cell activation during antigen 
presentation requires a second signal. CD86, identified as a dendritic cell gene by our 
algorithm is an essential co-stimulatory molecule that delivers this second signal and 
is also a marker of dendritic cell maturation. Also in this list are TNFSF9 and 
TNFSF4, two cytokines that play a role in antigen presentation between dendritic 
cells and T lymphocytes.  

We have also identified 157 genes that are more likely to be induced in 
macrophages than in dendritic cells. Among these genes, FNGR1 is important for 
macrophages to detect interferon-gamma (also known as type II interferon), a key 
activating cytokine of macrophages. HMGB1, a chromatin structural protein, is 
believed to be involved in inflammation and sepsis. Another interesting gene is 
ADAM12, which is from a family of proteinases that are likely involved in tissue 
remodeling/wound healing by macrophages. 

5 Conclusions and future work 

By combining expression experiments across species, cell types and bacteria type we 
were able to obtain a core set of innate immune response genes. The set we identified 
contained many of the known key players in this response and also included novel 
predictions. We have also identified unique signatures for macrophages and dendritic 
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cells leading to insights regarding the set of processes activated in each of these cells 
types as part of the response. 

While our method assumes that homologous genes share similar functions, it is 
still sensitive to the observed expression profiles. Thus, if two homologs display 
different expression patterns they would be assigned different labels. Still, homology 
information is a very useful feature for most genes. Relying on homology information 
we were able to drastically improve the recovery of the correct set of genes. 

While we have focused here on immune response, our method is general and can 
be applied to other diseases or conditions. We would like to further explore the lists 
derived by our method to determine the interactions and mechanisms leading to the 
activation of these genes in the cells they were assigned to. We would also like to 
expand our method so that it can better utilize the temporal information available in 
the microarray data. An additional area to explore is to incorporate other sources of 
information in the construction of the weight matrix. For example, it would be 
interesting to consider protein domains in addition to sequence similarity when 
creating the weight matrix. 
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Appendix 

1. Proof of Eq (2) 

In this section we prove that for any positive numbers a, b, and c satisfying a + b + 
c = 1, there exist real numbers μ and σ such that if y ~ N(μ, σ2), then 

ay =−≤ )1Pr( , by =≤<− )11Pr( , cy => )1Pr( .     (5) 
Here N(μ, σ2) denotes the Gaussian distribution with mean μ and variance σ2.   
 

Proof: Let Φ denote the cumulative density function of the standard Gaussian 
distribution N(0,1). Let u = 2 / (Φ-1(a+b) - Φ-1(a)), ν = 1 + u ⋅ Φ-1(a). Then N(ν, u2) 
satisfies the conditions in Eq (5) as required to prove the claim we made for Eq. (2). 

2. Belief propagation for Gaussian Random Fields 

In Section 3.1, we describe the belief propagation algorithm on a Gaussian random 
field.  We give the message passing and belief update rules in Eq (3) and (4).  
Because each variable in a GRF follows a Gaussian distribution, these equations can 
be simplified and lead to very efficient update rules. 

Note that the operations carried out in Eq (3) and (4) are multiplication of 
univariate Gaussian distributions and marginalization of bivariate Gaussian 
distributions.  For multiplication of univariate Gaussian distributions with mean μi 
and variance σi

2, we have 
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where qi = 1/σi
2.  The resulting product is a Gaussian distribution with the 

following mean and variance 
( ) iii qq ∑∑← μμ  

( ) 12 −∑← iqσ  
We can get belief update rules for Eq (4) by substituting μi and σi

2 with the mean 
and variance of mki(yi) and ψi(yi), where k belongs to the set of the neighbors of i 
excluding j. 

 
Next we derive the rules for marginalization of bivariate Gaussian distributions in 

Eq (3).  Let 
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We can compute the mean and variance of message mij(yj), which is the result of 
marginalization of the bivariate Gaussian distribution in Eq (3), by matching the left-
hand side (LHS) and right-hand side (RHS) of Eq (6).  By expanding the exponent 
of the RHS of Eq (6), we get 
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Substituting and expanding the exponent of the LHS of Eq (6), we get 
 

             ( ) ( )[ ]⋅⋅⋅+⋅+++− jiijijjijiijij yywsignyyr ααα 2
2
1 *22      (8) 

where 
                         *2 ijij wλα =  and 21 ijijr ρ=  

 
Equating (7) and (8), we can get the following update rules for computing the 

mean and variance of message mij(yj)  
( ) ijijj wsign νμ ⋅= *  
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3. Identification of Common Response Genes 
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Following convergence of our inference algorithm for the GRF model, we obtained 
the posterior probability of a gene participating in immune response, for each cell 
type in each species, for both Gram-positive and Gram-negative infections. Using 
these posteriors we constructed the list of common response genes by selecting 
ortholog pairs whose posterior probabilities are higher than 0.5 in all cells, bacteria 
and species. These genes are up-regulated in response to bacterial infections in all 
types of experiments we looked at. 
 


